475 research outputs found

    Near-Infrared-Spectroscopy with Extremely Large Telescopes: Integral-Field- versus Multi-Object-Instruments

    Get PDF
    Integral-field-spectroscopy and multi-object-spectroscopy provide the high multiplex gain required for efficient use of the upcoming generation of extremely large telescopes. We present instrument developments and designs for both concepts, and how these designs can be applied to cryogenic near-infrared instrumentation. Specifically, the fiber-based concept stands out the possibility to expand it to any number of image points, and its modularity predestines it to become the new concept for multi-field-spectroscopy. Which of the three concepts --- integral-field-, multi-object-, or multi-field-spectroscopy --- is best suited for the largest telescopes is discussed considering the size of the objects and their density on the sky.Comment: 8 pages, 4 figures (converted to bitmap), to appear in the proceedings of the Workshop on Extremely Large Telescopes, Sweden, June 1-2, 1999, uses spie.sty (V0.91) and spiebib.bst (V0.91

    A new era of spectroscopy: SINFONI, NIR integral field spectroscopy at the diffraction limit of an 8m telescope

    Get PDF
    SINFONI, the SINgle Faint Object Near-infrared Investigation, is an instrument for the Very Large Telescope (VLT), which will start its operation mid 2002 and allow for the first time near infrared (NIR) integral field spectroscopy at the diffraction limit of an 8-m telescope. SINFONI is the combination of two state-of-the art instruments, the integral field spectrometer SPIFFI, built by the Max-Planck-Institut fuer extraterrestrische Physik (MPE), and the adaptive optics (AO) system MACAO, built by the European Southern Observatory (ESO). It will allow a unique type of observations by delivering simultaneously high spatial resolution (pixel sizes 0.025arcsec to 0.25arcsec) and a moderate spectral resolution (R~2000 to R~4500), where the higher spectral resolution mode will allow for software OH suppression. This opens new prospects for astronomy.Comment: 9 pages, 4 figures, to appear in SPIE proceedings "Astronomical Telescopes and Instrumentation 2000". More recent sensitivity estimates are available at http://www.mpe.mpg.de/www_ir/ir_instruments/sinfoni/spiffi.ht

    ALFA & 3D: integral field spectroscopy with adaptive optics

    Full text link
    One of the most important techniques for astrophysics with adaptive optics is the ability to do spectroscopy at diffraction limited scales. The extreme difficulty of positioning a faint target accurately on a very narrow slit can be avoided by using an integral field unit, which provides the added benefit of full spatial coverage. During 1998, working with ALFA and the 3D integral field spectrometer, we demonstrated the validity of this technique by extracting and distinguishing spectra from binary stars separated by only 0.26". The combination of ALFA & 3D is also ideally suited to imaging distant galaxies or the nuclei of nearby ones, as its field of view can be changed between 1.2"x1.2" and 4"x4", depending on the pixel scale chosen. In this contribution we present new results both on galactic targets, namely young stellar objects, as well as extra-galactic objects including a Seyfert and a starburst nucleus.Comment: SPIE meeting 4007 on Adaptive Optical Systems Technology, March 200

    The Origin of the Young Stars in the Nucleus of M31

    Full text link
    The triple nucleus of M31 consists of a population of old red stars in an eccentric disk (P1 and P2) and another population of younger A stars in a circular disk (P3) around M31's central supermassive black hole (SMBH). We argue that P1 and P2 determine the maximal radial extent of the younger A star population and provide the gas that fueled the starburst that generated P3. The eccentric stellar disk creates an m=1m=1 non-axisymmetric perturbation to the potential. This perturbed potential drives gas into the inner parsec around the SMBH, if the pattern speed of the eccentric stellar disk is Ωpâ‰Č3−10kms−1pc−1\Omega_p \lesssim 3-10 {\rm km s^{-1} pc^{-1}}. We show that stellar mass loss from P1 and P2 is sufficient to create a gravitationally unstable gaseous disk of \sim 10^5\Msun every 0.1−10.1-1 Gyrs, consistent with the 200 Myr age of P3. Similar processes may act in other systems to produce very compact nuclear starbursts.Comment: 10 pages, 7 figures, accepted by ApJ, changes made from referee suggestion

    Impact Of SCM Practices Of A Firm On Supply Chain Responsiveness And Competitive Advantage Of A Firm

    Get PDF
    Today’s supply chains are expected to respond rapidly, effectively, and efficiently to changes in the marketplace to sustain, succeed and create competitive advantage in this increasingly global marketplace by focusing on time, flexibility, and speed of response. The focus of this study is the supply chain responsiveness construct and a firm’s practices to respond to customer’s demands and constantly changing market conditions to create competitive advantage. This research conceptualizes three dimensions of supply chain responsiveness and develops a reliable and valid instrument for measuring this construct. The study further tests the relationships between supply chain management (SCM) practices, supply chain responsiveness, and competitive advantage using structural equation modeling based on 294 responses from industry professionals in the manufacturing and supply chain area. Research findings point out that higher level of SCM practices can lead to improved supply chain responsiveness and enhanced competitive advantage of a firm. Also supply chain responsiveness can have a direct positive impact on competitive advantage of a firm

    Stellar Dynamics and the implications on the merger evolution in NGC6240

    Full text link
    We report near-infrared integral field spectroscopy of the luminous merging galaxy NGC 6240. Stellar velocities show that the two K-band peaks separated by 1.6arcsec are the central parts of inclined, rotating disk galaxies with equal mass bulges. The dynamical masses of the nuclei are much larger than the stellar mass derived from the K-band light, implying that the progenitor galaxies were galaxies with massive bulges. The K-band light is dominated by red supergiants formed in the two nuclei in starbursts, triggered ~2x10^7 years ago, possibly by the most recent perigalactic approach. Strong feedback effects of a superwind and supernovae are responsible for a short duration burst (~5x10^6 years) which is already decaying. The two galaxies form a prograde-retrograde rotating system and from the stellar velocity field it seems that one of the two interacting galaxies is subject to a prograde encounter. Between the stellar nuclei is a prominent peak of molecular gas (H_2, CO). The stellar velocity dispersion peaks there indicating that the gas has formed a local, self-gravitating concentration decoupled from the stellar gravitational potential. NGC 6240 has previously been reported to fit the paradigm of an elliptical galaxy formed through the merger of two galaxies. This was based on the near-infrared light distribution which follows a r^1/4-law. Our data cast strong doubt on this conclusion: the system is by far not relaxed, rotation plays an important role, as does self-gravitating gas, and the near-infrared light is dominated by young stars.Comment: 34 pages, 11 figures, using AASTEX 5.0rc3.1, paper submitted to the Astrophysical Journal, revised versio

    Young Clusters in the Nuclear Starburst of M 83

    Get PDF
    We present a photometric catalog of 45 massive star clusters in the nuclear starburst of M 83 (NGC 5236), observed with the Hubble Space Telescope WFPC2, in both broad-band (F300W, F547M, and F814W) and narrow-band (F656N and F487N) filters. By comparing the photometry to theoretical population synthesis models, we estimate the age and mass of each cluster. We find that over 75% of the star clusters more massive than 2*10^4 Msun in the central 300 pc of M 83 are less than 10 Myr old. Among the clusters younger than 10 Myr and more massive than 5*10^3 Msun, 70% are between 5 and 7 Myr old. We list an additional 330 clusters that are detected in our F300W images, but not in the shallower F547M and F814W images. The clusters are distributed throughout a semicircular annulus that identifies the active region in the galaxy core, between 50 and 130 pc from the optical center of M 83. Clusters younger than 5 Myr are preferentially found along the perimeter of the semicircular annulus. We suggest that the 5-7 Myr population has evacuated much of the interstellar material from the active ringlet region, and that star formation is continuing along the edges of the region.Comment: 40 pages, 13 figures, accepted to ApJ

    Optical integral field spectroscopy of intermediate redshift infrared bright galaxies

    Full text link
    The extreme infrared (IR) luminosity of local luminous and ultra-luminous IR galaxies (U/LIRGs; 11 12, respectively) is mainly powered by star-formation processes triggered by mergers or interactions. While U/LIRGs are rare locally, at z > 1, they become more common, they dominate the star-formation rate (SFR) density, and a fraction of them are found to be normal disk galaxies. Therefore, there must be an evolution of the mechanism triggering these intense starbursts with redshift. To investigate this evolution, we present new optical SWIFT integral field spectroscopic H{\alpha}+[NII] observations of a sample of 9 intermediate-z (0.2 < z < 0.4) U/LIRG systems selected from Herschel 250{\mu}m observations. The main results are the following: (a) the ratios between the velocity dispersion and the rotation curve amplitude indicate that 10-25% (1-2 out of 8) might be compatible with being isolated disks while the remaining objects are interacting/merging systems; (b) the ratio between un-obscured and obscured SFR traced by H{\alpha} and LIR, respectively, is similar in both local and these intermediate-z U/LIRGs; and (c) the ratio between 250{\mu}m and the total IR luminosities of these intermediate-z U/LIRGs is higher than that of local U/LIRGs with the same LIR . This indicates a reduced dust temperature in these intermediate-z U/LIRGs. This, together with their already measured enhanced molecular gas content, suggests that the interstellar medium conditions are different in our sample of intermediate-z galaxies when compared to local U/LIRGs.Comment: Accepted for publication in MNRA
    • 

    corecore